Storm 读取MySQL数据实践

maven依赖包:

<dependency>
            <groupId>org.apache.storm</groupId>
            <artifactId>storm-core</artifactId>
            <version>1.1.1</version>
            <scope>provided</scope>
        </dependency>
                <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>6.0.2</version>
        </dependency>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

Spout:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Map;

import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;


public class MysqlSpout extends BaseRichSpout {
    String url = "jdbc:mysql://192.168.1.177:3306/bigdata";
    String username = "root";
    String password = "*******";

    private ResultSet res;
    private Statement sta;
    private SpoutOutputCollector collector;
    int id = 0;

    public void nextTuple() {
        String str = "";
        try {
            if (res.next()) {
                String username = res.getString(1);
                String school = res.getString(2);
                String device = res.getString(3);
                String logintime = res.getString(4);
                str += username+"\t"+school+"\t"+logintime+"\t"+device;
                collector.emit(new Values(str));
            }
        } catch (SQLException e) {
            e.printStackTrace();
        }
    }

    public void open(Map arg0, TopologyContext topology, SpoutOutputCollector collector) {

        try {
            String driver = "com.mysql.jdbc.Driver";
            Class.forName(driver);
            Connection conn = DriverManager.getConnection("jdbc:mysql://192.168.1.177:3306/bigdata", "root", "chineseall");
            sta = conn.createStatement();
            res = sta.executeQuery("select username,school,devicetype,logintime from device_log");
        } catch (SQLException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        }

        this.collector = collector;

    }

    public void declareOutputFields(OutputFieldsDeclarer output) {
        output.declare(new Fields("device"));
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65

Bolt1:

import java.util.HashMap;
import java.util.Map;
import org.apache.storm.topology.BasicOutputCollector;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseBasicBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;

public class Trans extends BaseBasicBolt {
    final Map<String, Sql> map = new HashMap<String, Sql>();
    public void execute(Tuple arg0, BasicOutputCollector output) {
        String str = String.valueOf(arg0.getValueByField("device"));
        String[] arrys = str.split("\t");
        String username = arrys[0];
        String school = arrys[1];
        String time = arrys[2].split(" ")[0];
        String logintime = time.split("-")[0] + time.split("-")[1];
        String device = arrys[3];
        Sql sql = null;
        if (map.containsKey(username + " " + logintime)) {
            sql = map.get(username + " " + logintime);
            sql.setUsername(username);
            sql.setSchool(school);
            sql.setDate(logintime);
            sql.setDevice_type(device);
            if("PC".equals(device)){
                int pc = sql.getPc();
                sql.setPc(pc+1);
            }else if("安卓".equals(device)){
                int android = sql.getAndroid();
                sql.setAndroid(android+1);
            }else if("苹果".equals(device)){
                int apple = sql.getApple();
                sql.setApple(apple+1);
            }
            int sum = sql.getSum();
            sql.setSum(sum+1);
        }else{
            sql = new Sql();
            sql.setUsername(username);
            sql.setSchool(school);
            sql.setDate(logintime);
            sql.setDevice_type(device);
            if("PC".equals(device)){
                sql.setPc(1);
            }else if("安卓".equals(device)){
                sql.setAndroid(1);
            }else if("苹果".equals(device)){
                sql.setApple(1);
            }
            sql.setSum(1);  
        }
        map.put(username + " " + logintime, sql);
        output.emit(new Values(sql));
    }

    public void declareOutputFields(OutputFieldsDeclarer output) {
        output.declare(new Fields("device"));
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63

Bolt2:

import org.apache.storm.task.OutputCollector;
import org.apache.storm.topology.BasicOutputCollector;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseBasicBolt;
import org.apache.storm.tuple.Tuple;

public class Output extends BaseBasicBolt {
    OutputCollector collector;

    public void execute(Tuple arg0, BasicOutputCollector outputCollector) {
        Sql sql = (Sql)arg0.getValueByField("device");
        System.out.println(sql.getUsername()+"\t"
                +sql.getSchool()+"\t"
                +sql.getDate()+"\t"
                +sql.getPc()+"\t"
                +sql.getAndroid()+"\t"
                +sql.getApple()+"\t"
                +sql.getSum());
    }

    public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

Job:

import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.topology.TopologyBuilder;

public class StartStorm {
    public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, AuthorizationException {
        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout("1", new MysqlSpout());
        builder.setBolt("2", new Trans()).shuffleGrouping("1");
        builder.setBolt("3", new Output()).shuffleGrouping("2");

        Config config = new Config();
        config.setDebug(false);
        if (args != null && args.length > 0) {
            config.setNumWorkers(2);
            StormSubmitter.submitTopology("mysql", config, builder.createTopology());
        } else {
            LocalCluster local = new LocalCluster();
            local.submitTopology("topo", config, builder.createTopology());

        }

    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

builder.setBolt(“2”, new Trans()).shuffleGrouping(“1”);
shuffleGrouping(“1”)在这里1记录bolt数据的来源是哪个Spout或者Bolt
builder.setBolt(“3”, new wordcount(), 5).fieldsGrouping(“2”, new Fields(“word”));
第二个参数new Fields(“word”) 表示按照名为word的分组来分发数据